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Asa

This thesis compares three estimation techniques in

application to the beta distribution: method of moments,

maximum likelihood, and minimum distance. The four para-

meter version of the beta distribution is used; it has two

shape parameters, and upper and lower limit parameters.

Linear interpolation on order statistics is used to find

initial estimates of the limits. The classical estimation

procedures, method of moments and maximum likelihood, are

applied through procedures found in the literature. A never

technique, minimum distance, is applied for the first time

to the beta distribution.

Comparision of estimation techniques is accomplished

using Monte Carlo analysis. Five sample sizes are

considered -- 4, 8, 12, 16, and 20 -- and three pairs of

shape parameters -- (3,3), (9,4), and (1,2) -- for a total

of fifteen cases. One thousand samples are generated for

each case, and each estimation technique is then applied to

all samples. Two effectiveness measures are used; they are

the mean squa e error of each parameter estimate, and the

Cramer-von Vises istance between the estimated and the true

distribution. These effectiveness measures are compared in

each case to determine which technique provides the best

overall effectiveness.
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COMPARISON OF ESTIMATION TECHNIQUES

FOR THE FOUR PARAMETER BETA DISTRIBUTION

I. Introduction

Statistical estimation is currently used in private

industry, in government, and in the military. Areas of

application include quality control, logistics, and simula-

tion. As estimation theory has been studied over time,

different techniques have been developed for finding esti-

mates of the parameters of probability distributions based

on a sample from that distribution. Therefore, there is a

need to perform a comparison of estimation methods for

specific distributions and determine whether any one method

out-performs the others. The research performed for this

thesis undertakes such a comparison for the four-parameter

beta distribution; the estimation methods compared are the

method of moments, maximum likelihood, and miniaum distance.

The following hypothetical situation illustrates how

the results of this thesis might be used. A large interna-

tional conglomerate, known as the Bertrand Corporation,

produces a highly complex, technologically sophisticated

piece of equipment called the widget. The president of the

corporation, a very wise and knowledgeable man, realizes

that his customers will require information on how long

their widgets will last. He therefore would like to know

the probability distribution of the time to failure (TTF) of

his product.

The desired information could be obtained in a number
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of ways. First, every widget produced could be operated

until it failed, and the length of operation recorded. This

technique would provide perfect information on the TTF of

each item; however, Bertrand Corporation stock could be

expected to drop drastically due to lack of sales.

A less costly method would be to start by assuming that

the TTF is normally distributed. Then, a random sample of

the widgets could be taken from those produced, and run to

failure. The mean and variance of this sample could then be

used as estimates of the mean and variance of the underlying

normal distribution. The difficulty inherent in this method

is that the normality assumption may not be valid. If the

analyst has no idea of the shape of the underlying distribu-

tion, he or she cannot be sure whether or not a normal curve

can be made to fit it with reasonable accuracy.

The third method is to assume as the underlying distri-

bution one which can take on a large variety of shapes, and

then take a random sample of widgets from which to find

estimates of the parameters of this distribution. The pres-

ident of Bertrand Corporation knows that the beta dis-

tribution can take on many shapes, but also realizes that

there are several methods available to perform the estima-

tion. He therefore would like to know what method will give

him the most accurate information on the time to failure of

the widgets, so that he can pass this information on to his

customers.

This thesis is undertaken in order to provide the
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aforementioned president, or anyone in a similar situation,

the answer that he or she requires. The two classical

methods of estimation, method of moments and maximum likeli-

hood, and a more recent technique called minimum distance

estimation, will be used to estimate the parameters of the

four parameter beta distribution. The techniques will then

be compared with each other, to determine if any one method

provides superior results. This thesis report will proceed

in four parts. First, the three estimation techniques will

be reviewed in general. Second, the beta distribution will

be described and application of the estimation methods to it

will be discussed. Third will be a summary of the Monte

Carlo analysis performed in order to evaluate the techniques

and make the desired comparisons. Last, the results and

conclusions of this thesis will be presented along with

suggestions for future work on the subject.
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II. EstimatioA Techniques

In the introduction, it was stated that this thesis

would compare method of moments, maximum likelihood, and

minimum distance estimation of the beta distribution. This

chapter will provide some background and general theory on

these three estimation techniques. First, however, a few

words about estimation in general are in order. Estimation

involves finding approximations, or estimates, of the para-

meters of a probabililty distribution through the use of

estimators. Mendenhall and Scheaffer define an estimator as

##a rule that tells us how to calculate an estimate based on

the measurements contained in a sample" (Ref 19:264). The

estimation process, then, is one of taking a sample from the

population of interest, performing calculations on the

sample points according to the "rule" of the estimator,

and using the results of these calculations as the estima-

tors of the parameters of the underlying distribution.

Next, this chapter will consider in detail three

specific rules, or techniques, used for estimation. The

first two are known as the classical estimation techniques;

the third is a more recent method.

Method of Moments

"The method of moments is one of the oldest estimation

techniques'' (Ref 4:7). The basic idea is fairly simple;

use as estimators those values of the parameters for which

sample moments equal population moments (Ref 19:300). The
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kth sample moment is computed from the sample as follows

(Ref 19:300):

3 - (2.1)

where n is the sample size and X. is the ith sample point.I

The kth population moment is derived from the underlying

distribution using the formula (Ref 19:300):

= E(Xk) (2.2)

The population moment will therefore be a function of the

parameters of the underlying distribution. Let p be the

number of parameters to be estimated. Setting up the

equations

P m k-1... .p (2.3)

provides a system of p equations in the p unknown

parameters, which may be solved to find the method of mom-

ents estimators of the parameters.

It is sometimes convenient to use functions of the

moments, rather than the moments themselves, when performing

method of moments estimation. This can be done, provided

the total number of different moments used is still equal to

the number of parameters being estimated. Two such func-

tions which are commonly used are the skewness and the

J5



kurtosis. Before defining these, it is necessary to define

a different class of moments, known as the central moments.

The kth central moment, or moment about the mean, of the

sample is (Ref 18:18):

k= 1(Xi - 1)k (2.4)mk ii

where X is the sample mean (I- m mi). The kth popula-

tion central moment is (Ref 18:18):

k =  E((X - ) k) (2.5)

where A - E(x) is the mean of the distribution. The central

moments are used in finding the sample skewness, K3, and

population skewness, K3P as follows (Ref 18:20-21):

332K 3  = m 3/(m 2 )  (2.6)

K3 = p3 /(P 2 )3/ 2  (2.7)

The sample and population kurtoses are derived from the

following formulas, the ,a, again indicating the sample

statistic (Ref 18:20-21):

K4 = m 4/(2)2 (2.8)

K4 - P94(22 (2.9)

6



Since the first and second moments, skewness, and kurtosis

together involve only the first four moments, they can be

used to find moment estimates for four parameters.

Maximum Likelihood

The method of maximum likelihood uses as estimators the

parameter values which maximize the likelihood, or joint

density, of the sample (Ref 19:303). Let f(y;!) be the

underlying probability distribution, where e - (01,0 2" 0p)

is a vector of parameter values. Since the sample is chosen

at random, the joint density of the sample is merely the

product of the probability distribution evaluated at each of

the sample points (Ref 19:171); the likelihood is therefore

defined by the formula,

n

L(X I P ..... Xn 0) = .l f(Xi;e) (2.10)

The goal is to find the vector e which maximizes this

function. This can be done by setting each of the p partial

derivatives 8L/8 e k  k=1,..p to zero and solving for the

0ek. In practice, it is usually expedient to take the

natural logarithm of L before maximizing; this transforms

the product into a sum, which is easier to differentiate.

Maximizing ln(L) will result in the same values for e

since the natural logarithm is a monotonically increasing

function (Ref 19:303). Therefore, the maximum likelihood

7



estimators are the roots of the p simultaneous equations

aIn L( Xn;) k .. (2.11)

In some cases, the estimators cannot be solved for in closed

form and must be found by iteration (Ref 4:6).

Minimum Distance

Minimum distance estimation has been developed more

recently than the previous two methods; its development took

place in the 1950's. This method evolved from attempts by

estimation theorists to strike a balance between the charac-

teristics of robustness and consistency. The term robust-

ness refers to the ability of an estimator to adapt to

deviations in thd underlying model and remain efficient (Ref

21:3). An estimator is consistent if it converges in proba-

bility to the true value of the parameter as the sample size

tends to infinity (Ref 19:309). The initial work in minimum

distance estimation was performed by I. Volfowitz. He

published a paper in 1953 (Ref 26), and another in 1957

(Ref 27) which outlined the minimum distance method and

showed it to be consistent; "in a wide variety of cases,

[the minimum distance method] will furnish super-consistent

estimators even when classical methods...fail to give con-

sistent estimators' (Ref 26:9).

It has not been until recently, however, that minimum

distance estimation has begun to be widely applied. In

their 1979 paper, Parr and Schucany applied the method to
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estimation of the location parameter of a symmetric distri-

bution, emphasizing the normal distribution, and found it to

yield "strongly consistent estimators with excellent ro-

bustness properties" (Ref 21:5). Other applications have

been accomplished at the Air Force Institute of Teochology

(AFIT) under the supervision of Dr. Albert H. Moore. They

are estimation of the location parameters of the generalized

exponential power distribution by Maj. Larry McNeese (Rof

17), estimation of the parameters of the generalized t

distribution, by Capt. Tony Daniels (Ref 4), estimation of

the three parameter weibull distribution, by Capt. Robert

Miller (Ref 20), and estimation of the three parameter gamma

distribution, by Capt. William L. James (Ref 13). These

studies generally found the minimum distance estimators to

be better than the classical methods. This thesis is a

continuation of these efforts.

The minimum distance method is an extention of the

goodness of fit tests used in testing hypotheses. To test,

by goodness of fit, the hypothesis that a sample is from a

certain distribution with certain parameter values, one

constructs the distribution function F(x;p) at these para-

meter values, and determines how well it fits the distribu-

tion function of the sample (called the empirical distribu-

tion function, or EDF) by some previously defined measure of

fit. Commonly, the goodness of fit measure is some measure

of the distance between F(x;!) and the EDP. Minimum

distance estimation merely takes as its estimate of those

9



values which minimize the distance between F(x; ) and Sn(z).

Minimum distance estimation requires that three things

be specified: the family of distribution functions F(X;.),

a rule for obtaining the empirical distribution function,

denoted Sn(x), and a measure of the distance between F(x; )

and Sn(x). Previous applications to other families of dis-

tribution have already been mentioned; this thesis deals

with the beta family of distributions. There are several

EDF's which can be used, among them the 1/n step function

and median ranks. The distance measure is of crucial impor-

tance; often, distance estimators are identified by the name

of the distance measure used. They will be described in

more detail.

The most common distance measures are descibed in Parr

and Schucany; the following definitions are from this paper

(Ref 21:7-8). The first is the weighted Kolmogorov distance

D(Sn,F) s aup1 Sn(x)-F(z;O)I4(F(x;O)) (2.12)

where 'sup' signifies the least upper bound and 4 is a

weighting function. This statistic should be familiar to

those experienced with the KolmoSorov-Smirnov goodness of

fit test (Ref 3:347). Another measure developed from a

goodness of fit statistio is the weighted Cramer-von Rises

distance

I (Sn.F) =-S!~ F*)

V 2 C(Snz-F(z. l2(F(z.2))dF(x.2) (2.13)

10



where, again, is a weighting function. Use of uniform

weighting, 4(.)-1, defines the unweighted Cramer-von Mises

(CVM) measure V 2(Sn,F). The weighting scheme C(F) - 1

O<F<1 defines the Anderson-Darling distance measure, which

is denoted A2 (Sn,F). Kuiper's maximal interval probability

distance is given by the equation,

V(SnF) " up-aba- (Sn(b)-Sn(a)) - (F(b;')-F(a;§)) (2.14)

Last, a general class of distance measures is defined by

Z (Sn,F) -
a,b

aJ (Sn(x)-FcK;$e) )2dF(X;O)4b[J(Sn(X)-F(X;O) )dF(X;O)]1
2  (2.15)

This class includes the CVM measure when a-0 and b-1,

Watson's measure, denoted U 2(Sn,F) when a=i and bml, and

Chapman's measure, when a-0 and b-1. The previous AFIT

studies which were mentioned have used the Kolmogrov,

Cramer-von Mises, and Anderson-Darling distance measures.

11#



III. The Beta Distribution

The beta distribution is becoming more and more
widely used in applied statistical analysis in
many business disciplines. For example, in finance
the beta distribution has been employed in an
attempt to measure the probability of payment or
default in a credit granting decision. In manage-
mont, the beta distribution is often used in PERT.
And in marketing, the beta distribution is fre-
quently employed in Markovian brand-switchin S

models when transition probabilities are taken to
be random variables rather than parameters (Ref
8:1).

These are just a few ways in which the beta distribution

is applied in the "real world." However, work on estima-

tion of the four parameter beta, with all four parameters

unknown, is scarce; in preparation for this thesis, only one

paper--by Glenn E. Tarr (Ref 24)--was found which dealt with

estimation of all four parameters. Virtually all of the work

done on estimation of the beta that this author encountered

either dealt only with the two parameter version or assumed

that the other two parameters were known constants.

This chapter deals with the four parameter beta distri-

bution: what it is, and how the three estimation techniques

described in Chapter II may be applied to it. The first

section of this chapter defines the beta family of proba-

bility distributions and reviews some of its character-

istics. The second section descibes the method used to set

preliminary estimates for two of the parameters, which are

required in applying the three estimation procedures in

Chapter II. The final three sections of this chapter consi-

der how the method of moments, maximum likelihood, and

1
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minimum distance are applied to the beta distribution.

General

This thesis applies the three estimation techniques

explained in the previous chapter to the beta family of

probability distributions. The most general form of the

probability density function (pdf) is referred to as the four

parameter beta distribution, and has the form (Ref 14:37):

1 P-1Q-1 +_
I 1 (Y-A)P (B-Y) -/(B-A)P+ -  ASYjB

f(y;P,Q.A,B) B(P,Q) (3.1)

0 , otherwise

The parameters A and B define the range over which the

function is defined; hence, any random variate from this

distribution must fall between A and B. The parameters P

and Q are known as the shape parameters, since they deter-

mine the shape of the graph of the probability density

function. Both P and Q are required to be strictly greater

than zero, and B must be strictly greater than A.

Exchanging the values of P and Q cause the graph to be

reflected about the midpoint of the line segment AB. The

function B(P,Q) is defined by the formula (Ref 19:130):

B(P.Q) Y ty 1(1 Y) Q-14p d (3.2)

The special case where A-O and B-I is commonly known as

13I



the standard or two parameter beta, and has the form (Ref

14:37):

1 P-1 Q-1

f(y;P,Q,) B(P,Q) (l-j) (3.3)

0 , otherwise

If A and B are known, a random variable from the four para-

meter beta can be transformed into a standard beta random

variable by the equation (Ref 14:37):

X . ... (3.4)B-A

Some members of the beta family have specific names

attached to them. When Q-1 in equation 3.1, it is sometimes

called the power function, or in equation 3.3, the stand-

ardized power function (Ref 14:37). The standard beta with

P-Q-1/2 is known as the arc-sine distribution, and is used in

random walk theory (Ref 14:39). When P-Q-1, the beta

distibution reduces to the well-known continuous uniform, or

rectangular, distribution.

The cumulative distribution function (cdf) of the beta

distribution is found by integrating equation 3.1 from A to

the point at which the cdf is to be evaluated. The cdf of

the standard beta is commonly called the incomplete beta

function, and is denoted I y(P,Q) (Ref 19:131).

As mentioned in the introduction, the main reason that

14



the beta family of distributions is useful in fitting empir-

ical distribution functions is its ability to take on many

different shapes. A few of these shapes are presented in

Figure 3-1. A more complete collection of graphs of beta

density functions is included in Johnson and Koltz (Ref

14:42-44). When both P and Q are less than one, the

function is U-shaped. When one is less than and the other

greater than one, it is J-shaped. If both P and Q are

greater than one, the function is bell-shaped. If P is

greater than Q. the function is skewed to the right, the

opposite if Q>P. The function is symmetric about (B-A)/2 if

P equals Q.

Obtaining Startins Values

The solution methods used to accomplish the three esti-

mation techniques explained in Chapter II all require an

initial estimate of the parameters A and B. This is done

through interpolation performed on the sample points as

follows. First, the sample is sorted from smallest to

lagest, so that I i)  is the ith order statistic (Ref 19:229).

Then the median rank is found for the two smallest and two

largest points. The median rank of 1I ) is computed using

the formula (Ref 15:31):

MR(li) 10-0.3 (3.5)

For convenience, MR(X(i)) shall be denoted i"

The interpolation method is displayed graphically in

0
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Figure 3-2. In finding the estimate for A, the slope of the

line connecting the first two points is calculated by the

usual formula:

m = (Y2 -Y 1 )/(X(2 )-X( )) (3.6)

The estimate for A is the point at which this line inter-

epts the x-axis. Using this slope formula on this lower

portion of the line, and then solving for A, provides the

-following:

A - X(1)-Y /M (3.7)

The same procedure performed on the largest two order

statistics gives the formula for estimating B:

B - (1-Y )/m + X(n )  (3.8)

where m is calculated using the nth and n-lst points, in

place of the second and first in equation 3.6.

To the author's knowledge, this is a new method for

finding these parameters of the beta distribution. It was

not mentioned in any of the literature that was read in

preparation for this thesis. It should be noted that inter-

polation will always give plausible estimates for A and B;

that is, A is always smaller than the first order statistic,

and B is always larger than the last. The estimates would be

17
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expected to be more accurate with larger sample sizes.

Consistency, although not proven here, seems apparent; as n

increases, the first two order statistics would draw closer

to the true value of A, and therefore the li-ear approxima-

tion would better fit the tail of the true cdf. An equi-

valent argument applies to B on the upper side. Intuitively,

it seems reasonable to expect the estimate of A to be more

accurate that B when the pdf is skewed left -- that is, when

QP -- and to expect B to be more accurate than A when the

pdf is skewed right -- when P>Q. This would occur because

the skewness causes a large portion of the data to be at one

end of the range, providing a closer interpolation at that

end.

Method of Moments

The method of moments is the only estimation technique

for which an application to the full four parameter beta was

found in the literature; that being a paper by Glenn Tarr

(Ref 24). Moment estimation of the standard beta is dis-

cussed in detail by Fielitz and Myers (Ref 8), and the

formulas for the two moments required to estimate the stan-

dard beta are available from this and various other sources

(Ref 14,18).

There are two possible approaches to performing moment

estimation of the beta distribution. First, the estimates

of A and B found by interpolation could be kept as final

estimates, and the first two moments used to find P and Q in

19



a manner similar to Fielitz and Myers. The second method is

to use the first four moments to acquire method of moments

estimators for all four of the parameters. Both of these

alternatives will be evaluated in this thesis,

The first method requires the formulas for the first

two moments of the beta distribution. The central moments

will be used; the formulas are as follows (Ref 14:44):

= E(I) - A + P(B-A) (3.9)(P+Q)

P2  Var(X) [(B-A) 2PQ]/[(P+Q) (P+Q+l)) (3.10)

These formulas are then equated to the first sample moment,

the sample mean X, and the second sample central moment, the

2
(biased) sample variance s . These equations are then

solved for P and Q, resulting in the folowing equations:

P [ ) 2(1--*)]/S 2 e - 1 (3.11)

Q = [(1-10)2Z1]/S 2 * - (1_1) (3.12)
-C

where I = (i-A)I(B-A) is the standardized sample mean, and

S2* = S2 /(B-A) 2 is the standardized sample deviation. Using

the interpolated estimates of A and B, the values of P and Q

are thus easily found from the data. In Tart's paper, he

suggests using the two moment method for "relatively large"

samples, and suggests the first and last order statistics as

estimates for A and B. (Ref 24:3).
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The above technique is only a 'partial" method of

moments estimation, since moments are not used to estimate A

and B. Glenn Tarr, in the paper referred to earlier, esti-

mated all four parameters by method of moments, using the

skewness and kurtosis. The population skewness and kurtosis

for the beta distibution are given by the formulas (Ref

18:44):

K13 = 2(P-Q)(P+Q+l) 1/2 ]/[(PQ)1/2 (P+Q 2) (3.13)
]/((P[2)P-()(P+2+I

K4 = 3(P+Q+1)[2(P+Q) 2+PQ(P+Q-6)]/PQ(P+Q+2)(P+Q+3) (3.14)

In Tarr's paper, he used a shifted kurtosis; his

population kurtosis formula is equivalent to subtracting

three from equation 3.14. His formula for the sample

skewness and kurtosis are as follows (Ref 24:8):

3 3 3K 3 = [n Tj-3nT2 T,+2T3]/SD n(n-1)(n-2) (3.15)

3 22 2 2_ 4

K4  [ (n3+n 2 )T 4 -4(n
2 +n)T 3 T 1 -3(n

2 -n)T 2+12nT2Tl-6T1] /

[SD 4 n(n-1)(n-2)(n-3)] (3.16)

Where T I ,and SD is the sample standard deviation.
iIli

Since the skewness and kurtosis involve only P and Q,

2
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setting these formulas equal to the sample skewness and

kurtosis respectively provides two equations in two unknowns

which may be solved by numerical techniques. Once these

values are found, A and B are estimated using equations 8

and 9; solving for A and B rather than P and Q leads to the

formulas:

A - (S PQ (3.17)

B = X((P+Q)-AQI/P (3.18)

Thus, the method of moment estimators have been formed for

all four parameters.

Maximum Likelihood

To the author's knowledge, maximum likelihood estima-

tion of the complete four parameter beta distribution has

not yet been developed. No reference to an ML technique

which estimates A and B were found in the literature. This

thesis will deal with a "partial" maximum likelihood esti-

mation process; that is, one which keeps the interpolated

estimates of A and B as constants and estimates only P and Q

by maximum likelihood.

The technique used for maximum likelihood estimation of

the beta is that developed by Gnanadesikan, Pinkham, and

Hughes in 1967 (Ref 11). It dealt with the standard beta,

and performed the estimation using smallest order statistics.

22
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The resulting simultaneous equations were solved by Newton's

method, and it was stated that "The starting values...used

are crucial for the efficient convergence of the iterative

scheme" (Ref 11:611).

Beckman and Tietjen picked up on Gnanadesikan, et al.,

and developed a solution method which is "fast, simple,"

and for which 'No starting values are required and no

convergence problems have been encountered" (Ref 2:254).

The likelihood equations to be solved are given as follows

(Ref 2:253):

4(P) - 4(P+Q) lnG1  (3.19)

4(Q) - 4(P+Q) InG 2  (3.20)

where

G1 iP (Xi-A)/(B-A)1l/n (3.21)

n

G 1 =iT[(B-Xi)I(B-A)1/n (3.22)

4(z) - -ln(r )) (Ref 11:609) (3.23)

In order to solve the simultaneous equations 3.15 and

3.16, Beckman and Tietjen used the following procedure.

First, equation 3.16 was solved for 4(P+Q). This was sub-
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stituted into 3.15, which was then solved for (P). Then,

the inverse of 4(.) was taken of each side, providing an

equation for P. This equation was then substituted for P in

equation 3.16, leading to the following equation (Ref 2:254):

(Q)-{[-l(ISOlnO -I2+(Q)2Qa-lnG -0 (3.24)

The root of this equation was found by the secant method;

this same method was used to evaluate 4-1 (). The function

40) was evaluated using an approzimation given in the

reference. The secant method "requires the user to specify

an interval...within which the root is located" (Ref 2:254).

Beckman and Tietjen provide tables from which P and Q can be

found for given values of G and G 2 ; a listing of their

computer program is also provided. This thesis uses that

program to find the maximum likelihood estimates of P and Q,

given the interpolated estimates of A and B.

In a comment on the Fielitz and Myers paper (Ref 8),

which favored the method of moments for estimating the beta

distribution, and on a rebuttal by Romesburg (Ref 22). which

supported maximum likelihood, Kottas and Lau (Ref 16) wrote

an excellent article which summarizes both classical methods

of estimating the beta, provides historical perspective, and

comments on which is the better technique for estimating P

and Q. They state that Fisher, the initial developer of the

maximum likelihood method, "mathematically proved that the

inherent variance of an NM estimator [of the beta distribu-

2
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tion] is always greater than or equal to that of the corre-

sponding ML estimator and approaches the latter only in near

normal cases" (Ref 16:529). In an article which focused on

the small sample case, Dishon and Weiss reached a similar

conclusion; they compiled a table comparing the MM and ML

estimators for various parameter values and sample sizes, and

concluded that "with few exceptions the ML estimator is more

accurate for low n than is the moment estimator' (Ref $:4).

In order for the results of this thesis to be consistent with

these findings, the "partial" maximum likelihood estimates

of P and Q would be expected to be more accurate than the

''partiaI" moment estimates.

Minimum Distance

This thesis represents, to the author's knowledge, the

first attempt at estimation of the parameters of the beta

distribution by the minimum distance technique. It is the

first attempt at AFIT to estimate more than one parameter by

minimum distance. Althoiugh some of the AFIT theses.

mentioned earlier (Refs 4, 13, 17. 20), did deal with more

than one parameter, only one parameter was estimated by

minimum distance; this estimate was then used to improve the

estimates of the other parameters found by other methods.

This thesis will attempt to find minimum distance estimates

for all four parameters of the beta distribution.

The empirical distribution function to be used in this

thesis is the 1/n step function, which assigns the ith point

of the ordered sample the value i/n. The Cramer-von Mises

2
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distance measure will be used. When applied to the 1/n step

function, the CVM measure defined in equation 2.13, with

uniform weighting, reduces to (Ref 23:731):

2 aXi) ll1 Z (3.25)

W 2(SnF) - F(X 2 n )

Where F(Xi is the cdf evaluated at the ith sample point.

This same source provides similar formulas for applying many

of the other distance formulas mentioned in Chapter I to

the 1/n step function EDF.

The process used to find the minimum distance estimates

is as follows. First, the initial estimates of A and B are

found by interpolation. Then the moment equations, 3.11 and

3.12, are used to Set starting values for P and Q. Holding

A and B fixed, equation 3.25 is minimized for P and Q (the

parameters P, Q, A, and B are implicitly contained in

F(Xi)). After this minimization is accomplished, P and Q are

held constant at the new values, and 3.25 is minimized for A

and B. The resulting values of P, Q, A, and B are the

minimum distance estimates of these parameters.

2
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IV: Monte Carlo Analysis

This chapter deals with the specific method used to

perform the comparison of estimation techniques which is the

main purpose of this thesis. The comparison is performed

using Monte Carlo analysis. There are basically three steps

to a Monte Carlo anaysis of an estimation method. First,

random samples from the distribution to be estimated are

generated. Second, the parameters of the distribution are

estimated from these samples. Third, the estimations are

evaluated as to how well they approximated the true distri-

bution. This chapter will discuss each of these steps in

detail.

Since there are a vast amount of data and large numbers

of calculations involved in Monte Carlo analysis, use of a

high-speed computer is a necessity. A Control Data Corpor-

ation (CDC) computer system, located at Aeronautical Systems

Division, Wright-Patterson Air Force Base, Ohio, was used in

performing the analysis for this thesis. In programming

each of the three steps outlined above, existing software

was used whenever possible; specifically, subroutines from

the International Mathematical Statistics Library (IMSL)

were widely used. The reader should refer to the IMSL

manual (Ref 12) if specific information about these routines

is desired.

Generatiol of Dt

In order for the comparisons made by this thesis to be

2
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valid, they should be made for a number of sample sizes and

several different combinations of parameter values. Five

sample sizes were used: 4, 8, 12, 16, and 20. For each of

these sample sizes, three combinations of P and Q were used:

P-3, Q-3; P-9, Q-4; and P-i, Q-2 (refer to Figure 1 in

Chapter III for a graph of these curves). In order to save

on computer time, only one combination of values was used

for A and B; different values are not expected to have an

affect on estimation ability, since such a change would only

result in a linear translation along the axis. The values

A-2, B-10 were arbitrarily chosen for this analysis.

For each of the 15 cases (five sample sizes times three

P, Q combinations), 1000 samples were generated for use in

estimation. Generation of beta random variates was accom-

plished using the IHSL routine GGBTR, which provides an

array of standard beta random variates for a specified P, Q,

and sample size. The resulting array was then sorted using

the ZMSL routine VSRTA. The random variates were then

unstandardized, using equation 3.4 when solved for Y instead

of X, so that the random variates now formed a sample from

the desired four parameter beta distribution.

Since the interpolated estimates of A and B are needed

for all three estimation techniques, they were calculated in

the same program which performed the data generation. The

method is exactly as described in Chapter III; the median

ranks of the first two and last two points of the previously

sorted sample were calculated using equation 3.5, the slopes

2
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were found using equation 3.6 and a similar expression for

the two highest points, and then equations 3.7 and 3.8 were

applied to calculate the estimates. The mean and standard

deviation of each sample were also calculated at this time.

The number of replications (1000 in this analysis), sample

size, true values of P, Q, A, and B, and 1000 sets of

replication number, list of random variates, interpolated

estimates of A and B, mean, and standard deviation were

stored on permanent file for use by each of the three esti-

mation programs. A listing of the program which performed

this data generation is provided in Appendix C.

Computerization of Estimation Techniaues

M!A14 &4L M.2 main. In the previous chapter, it was

explained that two sets of moment estimators would be calcu-

lated. They are the 'partial' MM estimators, using the

interpolated estimates of A and B and finding P and Q by the

first two moments, and the 'full' MM estimators, which use

the first two moments, skewness, and kurtosis to calculate

P, Q. A and B. The computer program written to do this is

included in Appendix D.

The 'partial' method of moments estimates were found

first; this was done through direct application of equations

3.11 and 3.12. The 'full' MM estimation technique is based

on the procedure suggested by Tarr (Ref 24). Finding P and

Q from the skewness and kurtosis involves solving a system

of two nonlinear equations in two unknowns. The IXSL

routine ZSCNT was used to accomplish 4this. using the

2
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'partial' MM estimates of P and Q as starting values. If

the program were to attempt to estimate either P or Q as

less than zero, the program was designed to use the

'partial' moment estimators for that sample. When the pro-

gram was executed, this was found to occur for virtually

every sample; when attempts to remedy this failed, Tarr's

approach was abandoned. These results will be discussed

further in the next chapter.

Maximum Likelihood. The program used to perform the ML

estimation is taken from the article by Beckman and Tietjen

(Ref 2:258). The only changes made were for input of data,

calculation of G 1 and G2 P and output of results. The reader

should refer to the source article for a program listing;

since the changes were superficial, the listing will not be

provided here.

_4inimum Distance. Computerization of the minimum dis-

tance method follows directly from the process outlined in

Chapter III. After the data was read in, the IMSL routine

ZXMIN was used to perform the minimization. This routine

minimizes a function, in this case equation 3.25, for an

array of parameters. Parr and Sohucuny used this routine in

their analysis (Ref 21:21). Using the two-moment estimates

as starting values, P and Q were used first as input para-

meters for ZXMIN, while A and B were held constant through

use of a COMMON statement. When this minimization was com-

pleted, ZIMIN was used a second time, this time with A and B
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as input parameters, using the interpolated estimates as

starting values, while the values of P and Q found in the

first minimization were held constant using a COMMON state-

ment. The estimate of A was set equal to the first order

statistic if ZXMIN attempted to estimate A greater than X(1)

similarly, X(n ) was used for B if ZXMIN attempted to set B <

X (n ) . The listing of the computer program used to perform

the minimum distance estimation is inclvded in Appendix E.

Comparison of Estimation Techniques

The third step in the Monte Carlo analysis is to

evaluate the estimates; this evaluation will be used as a

basis in comparing the estimation techniques. There are two

approaches which could be used for this evaluation. The

first approach would be to individually measure how close

the estimates of each parameter are to the true value of

that parameter. The measure commonly used for this type of

evaluation is the mean square error (MSE). The second

approach is to calculate an overall measure of how well the

estimated distribution fits the true distribution. A

distance measure of the type outlined in Chapter III is an

appropriate measure for this approach.

This thesis used both of these approaches; the mean

square errors of P, Q, A and B were found, and the mean CVM

distance between the estimated and true cdf calculated, for

each estimation method and each of the 15 cases of sample

size and P, Q values. The program written to perform both
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of these evaluations is listed in Appendix F. These two

approaches will now be explained in more detail.

Mean Are rrrs The mean square error is a

measure, based on repeated estimation, of how well an esti-

mation method has estimated a given parameter. The formula

for calculating the mean square error is as follows:

MSE(e) ] 2eIN (4.1)

where e is the true value of the parameter, 0 is the ith

estimate, and N is the number of times the estimation is

performed--in this analysis, N-1000. A difficulty in using

KSE's when many parameters are estimated is that conflicting

results are possible; estimation method A may have the

smallest USE for parameter 1. while method B has the

smallest MSE for parameter 2 for the same case. Another

potential difficulty with USE's is that they are not scale

invariant; the same size MSE may be highly significant for a

small valued parameter, but insignificant for a larger one.

This can complicate comparison of MSE's for different para-

meter values.

_Q! f£jn. The Cramer-von Mises (CVM) goodness of

fit statistic W 2 was defined by equation 2.13, using the

uniform weighting 4()-1. In this usage, however, the esti-

mated cdf F is used in place of Sn; the integral is

multiplied by the sample size to form the actual distance
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dF.
measure (Ref 23). Since dF(x)ff-dx-f(x)dx, the formula for

d

the distance between the estimated cdf F and the true cdf F

is:

W2(;,F) n (F(X,^)-F(X,_q))2f(X, ldx (4.2)

where e=(P,Q.A,B), and f(x,e) is the true pro-

bability density function (pdf). This integral was

evaluated using 16 point Gaussian quadrature. This solution

technique requires that the integral be over the limits -1

to 1; this is satisfied through the identity (Ref 10:221):

g(z) dx = -- i g ------- ldt (4.3)

where

(b-a)t+b+a
2

Gaussian quadrature estimates an integral with limits

-1 and 1 using a weighted sum, as follows (Ref 1:916):

1 (x)dx - 1w((4.4)
£1 Jul

where w i and x i are the ith Gaussian weights and quadrature
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points respectively, and n is the number of points; for this

analysis, n-16. The appropriate weights and points were

taken from the .of Mathemaical fsn£ijna (Ref

1:916). Since it is possible that the estimates of A and B

will be inside of the true values, some of the quadrature

points may be in rlaces where F is not defined. This problem

was overcome by defining F(x) to be zero when X<A and one

when X>B. This situation is depicted graphically in Figure

3. Having the estimates outside of the true values of A and

B presents no problem, since the integral is calculated only

between the true values.

The CVM statistic was calculated as just described for

each of the 1000 replications. The sample mean and standard

deviation of the CVM statistics can therefore be calculated

using the usual formulas:

t2= i]/lO00 (4.5)

2 l11002-2

SD(w2 ) 1(Wi2_.2) /1000 (4.6)

where is the CVI distance of the ith estimation.

i

Since the number of replications is large, the central

limit theorem implies that the mean CVV statisic is appoxi-

mately normally distributed (Ref 19:252). Therefore, a

confidence interval for the mean CVM statistic may be oalcu-
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lated (Ref 19:277). The formula for the confidence interval

is as follows (Ref 25:195):

p( i 2 _Z a/2SD(W 2)I/ < E(1 2 ) < i2 +Z a/2SD(W 2 /) =I) a (4.7)

where a is the significance level, Za/2 is the value of the

standard normal leaving an area of u/2 to the right, and N

is the number of replications, in this case, 1000.

The CVU distance has the advantage over the USE of

being a single measure of fit for all four parameters, and

also of being scale invariant with respect to the size of

the parameter values. One disadvantage, which goes along

with the first advantage, is that information about the

individual parameters is lost. At times, one may wish to

know which method worked better on a particular parameter;

for this, the MSE is the better measure. It should be clear

that there is no bias introduced by using the CVM measure

both in finding the minimum distance estimate and then again

in evaluating this estimate. That is because during minimi-

zation the distance between the estimated distribution func-

tion and the empirical distribution function is measured,

while during evaluation the distance measured is between the

estimated distribution function and the true distribution

function.
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V. Rjjtj lAj Conclus1iona

Results oA Comparisons

The numerical results of the two comparison approaches

are summarized in the appendices. There are fifteen tables

in each appendix, one for each case of sample size and

parameter values. Appendix A contains the tables of mean

square errors. The three estimation methods; method of

moment estimation (NNE), maximum likelihood estimation

(ILE), and minimum distance estimation (IDE) are listed down

the side. The mean square errors of P (MSEP), Q (MSEQ), A

(MSEA), and B (MSEB) are then listed across the row for each

method. Appendix B contains the means, standard deviations,

and confidence intervals for the CVM statistics. Again, the

three methods are listed down the side. Across each row

are, in order, the sample mean of the CVM statistics (ICVM),

the sample standard deviation of the CVM statistics (SDCVM),

the lower limit and the upper limit of the 95% confidence

interval of the mean of the CVM distance (95% C.I.). It

should be noted that SDCVI is an estimate of the population

standard deviation; it must be divided by YiO0 to get an

estimate of the standard deviation of the mean.

The reader may note that, in some cases, the MSE's and

the mean CVM statistic seem to contradict each other; that

is, one method may have ISE's equal to or smaller than

another for all parameters, but the other method has a

smaller mean CVI statistic. The case of N-4, P-9, Q4 is

such a case; both NNE and ILE are the interpolated estimates
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of A and B, so these MSE's are equal. However, the MSE'S of

both P and Q are smaller for the MLE, but the mean CVM is

smaller for the MME.

This phenomenon can occur because of the way in which

the four parameters of the beta distribution interact. The

reader should refer to Figure 1 in Chapter III, and review

the shape of the beta when P-9 and Q=4. The curve remains

very close to the x-axis until about 1/4 of the way from A

to B. For this reason, A is usually interpolated at about

this point on the axis. Using this as the lower limit,

however, the distribution is much more symmetric than when

the true value of A is used. Therefore, the values of P and

Q which best approximate the curve for the interpolated

estimates of A and B are different from the true values of

P and Q. A set of values which are further away, in an ESE

sense, from the true values than another set, may thus be

closer in a distance sense to the true distribution due to

the estimation of A and B.

Since the USE's and the mean CVM statistics contradict

each other at times, it is necessary to choose one to serve

as a basis of comparison between the estimation methods.

The mean CVK statistic will be used since it is an overall

measure and does not depend on the particular parameter

values. The method with the smallest mean CVM statistic

provides the closest fit, on the average, to the true dis-

tribution. Using this criterion, the moment estimate is

ranked first, followed by maximum likelihood and then mini-
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mum distance, for all sample sizes in cases P=Q=3 and P=9,

Q-4; and when N-4 for P-1, Q-2. For the other four sample

sizes with P-i, Q-2, maximum likelihood has the smallest

mean CVM, with NME next, and then MDE. THe MSE, however, is

smaller for MLE than for NNE in most of the cases.

Using just the point estimates of the mean CVM distance

gives no indication of whether the differences between the

MCVM for each method is large enough to be significant. For

this, the 95% confidence intervals can be used. If the

confidence intervals of two methods overlap, this indicates

that the mean CVM distances of the methods are not signifi-

cantly different. This comparison is equivalent to perform-

ing a t test of the difference between the means. Since

there are three means being considered, comparing these

three confidence intervals equates to performing multiple t

tests; for this reason, the effective a level - that is, the

probability of finding two means to be significantly diffe-

rent when they are not - is actually somewhat higher than

0.05. When the confidence intervals listed in Appendix B

are compared, they show that the 95% confidence intervals

for the NNE and XLE distance measures overlap in every case.

This indicates that the difference between them is not

statistically significant. Comparing confidence intervals

for the IDE indicates mixed results. In some cases (N-4,

P-3, Q-3; N-4, P-I, Q-2; N-12, P-9, Q-4), the CVM statistic

of the minimum distance method is significantly greater than

for both of the other methods. In five cases (N-4, P-9,
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Q=4; N-S. P-9, Q-4; N=12, P-3, Q-3; N=12, P-i, Q-2; N-20,

P-3. Q-3). the CVM statistic for MDE is significantly

greater than the smaller of the other distances, but not the

larger one. In the other seven cases, all three confidence

intervals overlap, so that none of the differences are

significant.

Although not used in comparing overall effectiveness,

the mean square errors must be used if effectiveness in

estimating a particular parameter is to be compared.

Problems arise, however, in comparing the XSE's of P and Q.

since they depend on the values of A and B as described

earlier. However, since the interpolated estimates of A and

B do not depend on other parameters, these can be compared

to the MDE estimates of A and B using MSE's. In this com-

parison, the MDE fares better than in the previous para-

graph. Overall, the differences in the MSE's are small.

The interpolated estimate s are better in all cases with

sample size four. For sample size eight, neither method has

a clear superiority. With N-12, the USE's using minimum

distance are smaller in all cases except for A when P-1, Q-

2, where it is slightly larger. The minimum distance esti-

mates have a smaller USE than the interpolated estimates of

A and B for all cases with sample sizes 16 and 20.

In Chapter III, in the section on obtaining starting

values, a number of suppositions were made concerning the

interpolated values of A and B. The results in Appendix A

can now be used to test these suppositions. Consistency was
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the first supposition; the accuracy of the estimates was

expected to increase as sample size increasd. This is

supported by the results. The mean square errors of both A

and B decrease monotonically as the sample size increases for

all three sets of parameter values. The second supposition

was that left-skewed distributions would provide better

estimates of A, while right-skewed distributions would pro-

vide better estimates of B. This is also borne out by the

results. For the case P-9, Q-4, which is skewed right, the

USE of B is always much less than the MSE for A; in fact,

the KSE of A is always at least nine times the MSE of B.

For the left-skewed case, P-1, Q=2, the USE of A is always

less than the USE of B by at least a factor of seven. In

the symmetric case, P=Q=3, the XSE's of A and B are nearly

equal in all the sample sizes.

Cono lus ions

Does the president of the Bertrand Corporation have an

answer to his question? What is the best method? Based

upon the results of this analysis, and for the range of

sample sizes considered, the method of moments using inter-

polated values of A and B seems to the the best choice of

the three methods investigated. It provides estimates which

fit the true distribution at least as well as the other two

methods, and is more easily computed than either the methods

of maximum likelihood or minimum distance. For a single

sample, the moment estimates may be easily found using a
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desk calculator. The method of maximum likelihood provides

estimates of nearly equal accuracy to the method of moments,

and is certainly a viable alternative; however, the computa-

tion is more involved and, for an exact solution, requires

computerization. The minimum distance method, when applied

to all four parameters, does not appear to be as good,

especially in light of the fact that it requires much more

computer time than the others to obtain a solution. The

fact that its estimates of A and B were improvements would

seem to indicate that minimum distance might be successfully

applied to the location-type parameters of the beta distri-

bution.

The four moment estimation technique suggested by Tarr

(Ref 24) is apparently not as straightforward as he seems to

believe. Careful re-reading of this paper revealed that the

author apparently did no actual verification or Monte-Carlo

analysis of this technique at all. His tables seem to have

been generated merely by choosing values of P and Q,

plugging them into the formulas for the population skewness

and kurtosis, and tabling the resulting values. More work

is required on this method if it is to be a viable

alternative to the others presented herein.

Recommendations for Further S

As stated, investigation into the viability of Tarr's

method is a possible area of study. Another possibiliy

would be extension of the maximum likelihood method in

Beckman and TietJen (Ref 2) to all four parameters. A third
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alternative would be to combine MME and MLE into a 'hybrid'

approach. This method could use the interpolated values of A

and B to obtain ML estimates of P and Q, just as done in this

thesis. Then, these estimates of P and Q could be used in

equations 3.17 and 3.18 to obtain new estimates of A and B

with the first two moments. It would then be possible to use

these to re-estimate P and Q, and perhaps loop through this

procedure until the desired accuracy is achieved. The study

would have to determine if this would lead to significant

improvements over the methods evaluated in this thesis.

Regarding minimum distance estimation, this was the

first attempt at applying this method to the beta distribu-

tion, and it should not be abandoned just because it is not

yet as good as the other techniques. There is still work to

be done. One area that could be explored would be to try

other distance measures to see if they may lead to an im-

provement. For instance, the Anderson-Darling statistic may

turn out to be better for estimating A and B, since it is

more heavily weighted at the tails of the distribution.

Another possibility would be to only estimate one parameter

by MDE. One may wish to use Tarr's formulation for the beta

distribution, which uses 1 foi A as the location parameter,0

and M, which equals B-A, as a range parameter (Ref 24:1). X0

and N could be found by interpolation, P and Q by MM or ML.

and then I could be refined by MD, keeping N, P. and Q0

fixed. This new 0 coul-d then be used to improve the esti-

mates of P and Q. This would also cut down on the use of
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computer time, since only one parameter, rather than four,

would be estimated by minimum distance.
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Appendix A

Tables of Mean Sguare Errors

The following notation is used in this Appendix.

Term Notation

Method of Moments Estimation ............ MME

Maximum Likelihood Estimation ........... MLE

Minimum Distance Estimation ............. MDE

Mean Square Error of P ................ MSEP

Mean Square Error of Q .................. MSEQ

Mean Square Error of A.................. MSEA

Mean Square Error of B.................. MSEB

Monte Carlo sample size is 1000 and true values of A
and B are 2 and 10 for all tables.
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TABLE A-I

Mean Square Errors

Sample size 4
True P 3
True Q 3

I MME 3.742108 3.658086 4.668322 4.653648 I
I MLE 2.739536 2.649655 4.668322 4.653648 I
I MDE 12.371356 14.542017 4.744504 4.737503 II I

TABLE A-II

Mean Square Errors

Sample Size 4
True P 9
True Q 4

I NI IEB I
N MKE 60.861580 8.601137 16.911807 1.726146 I

I MLE 55.594636 6.942450 16.911807 1.726146 I
I IDE 67.128382 13.105965 17.014121 1.756985 II I

TABLE A-III

Mean Square Errors

Sample size 4
True P 1
True Q 2

I sP s SAME I
I MIE 0.410244 0.936122 1.217973 8.993774 I
I ILE 0.626805 0.645073 1.217973 8.993774 I
I MDE 5.416876 21.291772 1.239676 9.114334 I
I I
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TABLE A-IV

Mean Square Errors

Sample size 8
True P 3
True Q 3

J MSEP MSEB
N MNE 3.427817 3.354894 2.904387 2.940100 I

I XLE 3.049777 2.987382 2.904387 2.940100 I
I MDE 9.766766 9.877664 2.890916 2.957770 II I

TABLE A-V

Mean Square Errors

Sample Size 8
True P 9
True Q 4

I MSEP M IS.A MSEB I
I IKE 56.805536 7.960173 13.934737 1.117937 I
I MLE 54.788050 7.319176 13.934737 1.117937 I
i MDE 60.792229 18.236968 13.786411 1.111636 II I

TABLE A-VI

Mean Square Errors

Sample size 8
True P 1
True Q 2

Im UI U2A LM
I INE 0.332060 0.975033 0.335525 4.998726 I
i ILE 0.328806 0.862249 0.335525 4.998726 I
I MDE 8.262157 23.410740 0.363392 4.971074 I
I 5
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TABLE A-VII

Mean Square Errors

Sample size 12
True P 3
True Q 3

IMSEP S MSEA I
i NNE 2.825820 2.868660 2.089426 2.126352 I
I MLE 2.761430 2.815917 2.089426 2.126352 I
I MDE 5.539327 4.950296 2.013997 2.032997 II I

TABLE A-VIII

Mean Square Errors

Sample Size 12
True P 9
True Q 4

I URE UIs E
I NNE 52.775368 7.208131 12.263634 0.858765 I
I MLE 52.519962 7.059538 12.263634 0.858765 i
I MDE 49.354920 9.095091 12.013108 0.826734 iI I

TABLE A-IX

Mean Square Errors

Sample size 12
True P 1
True Q 2

I IM NM lsA MsE i
N NIE 0.230257 0.838969 0.142688 3.206688 I

i ILE 0.207590 0.777774 0.142688 3.206688 i
I MDE 1.013119 3.495416 0.146702 3.129456 I
I I
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TABLE A-X

Mean Square Errors

Sample size 16
True P 3
True Q 3

I Kin U Ksis I
I MME 2.609627 2.558815 1.826545 1.650983 I

I MLE 2.708616 2.671452 1.826545 1.650983 I
I MDE 2.943447 2.845556 1.732211 1.560583I I

TABLE A-XI

Mean Square Errors

Sample Size 16
True P 9
True Q 4

I MME 50.354216 6.726745 11.302901 0.716087 I
i MLE 51.150863 6.818277 11.302901 0.716087 I
i MDE 46.387784 6.755438 11.102680 0.690490 II I

TABLE A-Ill

Mean Square Errors

Sample size 16
True P 1
True Q 2

I U I 111 lil U I
I MIE 0.168482 0.782000 0.093014 2.697157 I
I ILl 0.155296 0.777950 0.093014 2.697157 I
I MDE 0.364832 1.755449 0.092245 2.604381 I
I I
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TABLE A-IIII

Mean Square Errors

Sample size 20
True P 3
True Q 3

N NKE 2.300955 2.353331 1.454751 1.414300 I
I MLE 2.483768 2.551249 1.454751 1.414300 I

MDE 2.645247 2.566947 1.369513 1.325909 II I

TABLE A-IIV

Mean Square Errors

Sample Size 20
True P 9
True Q 4

USE lum RU~lA lI=i
I MME 49.079484 6.438000 10.798213 0.640201
I ILE 50.543684 6,711302 10.798213 0.640201
I MDE 43.965367 5.839172 10.579763 0.610275 I

TABLE A-XV

Mean Square Errors

Sample size 20
True P 1
True Q 2

I hE MSU2 lil lSi I
I NKE 0.125813 0.645373 0.057157 2.090599 I
I ULE 0.133994 0.639272 0.057157 2.090599 I
I MDE 0.238399 1.041494 0.056218 2.006221
I I
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Appendix B

Table. f Cramer-von Mises Distance:
Means. Standard Deviations, and Confidence Intervals

The following notation is used in this appendix.

Term Notation

Method of Moments Estimation ............ MME

Maximum Likelihood Estimation ........... LE

Minimum Distance Estimation ............. MDE

Mean CVM Distance ..................... MCVM

Standard Deviation of CVM Distance ... SDCVM

95% Confidence Interval
upper and lower limits ............... 95% C.I.

Monte Carlo sample size is 1000 and true values of A
and B are 2 and 10 for all tables.
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TABLE B-I

CVM Distance Statistics

Sample size 4
True P 3
True Q 3

I Mq!M SDCVI
I MME 0.135119 0.131025 0.126998--0.143240
I MLE 0.139685 0.136396 0.131231--0.148139 I
I MDE 0.161920 0.163691 0.151774--0.172066 II I

TABLE B-II

CVI Distance Statistics

Sample size 4
True P 9
True Q 4

I ICsVx 211.SL.. I
I MME 0.138114 0.132926 0.129875--0.146353 I
I ILE 0.143925 0.140191 0.135236--0.152614 I
I MDE 0.161689 0.162098 0.151642--0.171736I I

TABLE B-Ill

CVN Distance Statistics

Sample size 4
True P 1
True Q 2

smasasmas asasammamasm asmasmmasassam sss ammlmsmass asaa

I U2 I 211 C.I. I
I Mms 0.140421 0.142939 0.131562--0.149280 I
I ILE 0.143407 0.147824 0.134245--0.152569 i
I MDE 0.164817 0.168862 0.154351--0.175283 I
I I
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TABLE B-IV

CVM Distance Statistics

Sample size 8
True P 3
True Q 3

I KNE 0.128062 0.144414 0.119111--0.137023 I
I ILE 0.129722 0.148687 0.120506--0.138938 I

M IDE 0.144501 0.164251 0.134321--0.154681 II I

TABLE B-V

CVI Distance Statistics

Sample size 8
True P 9
True Q 4

I KNE 0.122436 0.128460 0.114474--0.130398
I ILE 0.125101 0.132076 0.116915--0.133287 I
I MDE 0.140132 0.146378 0.131059--0.149205 II I

TABLE B-VI

CVX Distance Statistics

Sample size 8
True P 1
True Q 2

mtm mm mm nmummm mmmmm mum mummmmm mm mm mmmmmmmmmm mmum mm m

I I ! I .f.kINx I
INN 0.132165 0.140954 0.123429--0.140901 I

I LE 0.129635 0.144304 0.120691--0.138579 I
I IDE 0.147750 0.164972 0.137525--0.157975 I

5 I
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TABLE B-VII

CVM Distance Statistics

Sample size 12
True P 3
True Q 3

MCI MMY! 95 ML M a I 0 MwM
I MME 0.121909 0.138635 0.113316--0.130502 I
i XLE 0.123787 0.140387 0.115086--0.132488 I
I MDE 0.141451 0.167972 0.131040--0.151862 II I

TABLE B-VIII

CVM Distance Statistics

Sample size 12
True P 9
True Q 4

I NNE 0.116762 0.129083 0.108761--0.124763 I
I XLE 0.118035 0.129308 0.110020--0.126050 I
I IDE 0.138822 0.150955 0.129466--0.148178 II I

TABLE B-Il

CVI Distance Statistics

Sample size 12
True P I
True Q 2

I NNE 0.127104 0.141719 0.118320--0.135888 1
I LE 0.119488 0.134865 0.111129--0.127847 I
I MDR 0.141441 0.168347 0.131007--0.151875 I
i I

57



TABLE B-1

CVM Distance Statistics

Sample size 16
True P 3
True Q 3

ISDCVM 9j I 1-I
I MIE 0.114084 0.132344 0.105881--0.122287 I
I MLE 0.115781 0.129284 0.107768--0.123794 I
J UDE 0.131064 0.154444 0.121491--0.140637 II I

TABLE B-lI

CVM Distance Statistics

Sample size 16

True P 9
True Q 4

I MIE 0.114048 0.132149 0.105857--0.122239 I
V XLE 0.117757 0.135425 0.109363--0.126151 I

I MDE 0.130373 0.149206 0.121125--0.139621 rI I

TABLE B-III

CVM Distance Statistics

Sample size 16
True P 1
True Q 2

*UE 0.131006 0.149941 0.121713-0.140299
I ULE 0.123323 0.143858 0.114407--0.132239 I
I MDE 0.141448 0.168164 0.131025--0.151871 II I
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TABLE B-XIII

CVM Distance Statistics

Sample size 20
True P 3
True Q 3

I MCVI SDCVM 2 C.I.
N INE 0.109630 0.124946 0.101886--0.117374 I

I MLE 0.112547 0.125415 0.104770--0.120316
I MDE 0.128660 0.147926 0.119491--0.137829 II I

TABLE B-XIV

CVI Distance Statistics

Sample size 20

True P 9
True Q 4

i SD_ . I
I NNE 0.119805 0.135413 0.111412--0.128198
I ILE 0.124453 0.137251 0.115946--0.132960 I
I UDE 0.137788 0.154729 0.128198--0.147378 I

TABLE B-IV

CVI Distance Statistics

Sample size 20
True P 1
True Q 2

I 0II 0.122389 0.135526 0.113989--0.130789 I
XLI 0.116783 0.130674 0.108684--0.124882 I

I MDE 0.131730 0.148973 0.122497--0.140963 I
I I

S9S
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PROGRAM BETAGEN

C **••o*••***,ae*.*e*•eeeoe**.eeee*.ee~e* * eee.eeeseeeeoeoe

C *
C WRITTEN BY 2LT DAVID E. BERTRAND AFIT/GOR-81D FOR MS THESIS
C • DECEMBER 1981
C * •
C * PURPOSE: GENERATION OF SAMPLES OF BETA RANDOM VARIATES
C * CALCULATION OF MEAN AND STANDARD DEVIATION OF SAMPLES*
C * CALCULATION OF ESTIMATES OF A AND B BY INTERPOLATION *
C * S
C * VARIABLES: DSEED - SEED FOR RANDOM NUMBER GENERATOR
C * P - FIRST SHAPE PARAMETER OF TRUE DISTRIBUTION *
C S Q - SECOND SHAPE PARAMETER OF TRUE DISTRIBUTION *
C * A - LOWER LIMIT OF TRUE DISTRIBUTION
C * B - UPPER LIMIT OF TRUE DISTRIBUTION
C * NR - DESIRED SAMPLE SIZE
C S NREPS - NUMBER OF SAMPLES TO BE GENERATED
C * GGBTR - IMSL ROUTINE WHICH GENERATES
C * STD BETA VARIATES
C * VSRTA - IMSL ROUTINE WHICH SORTS AN ARRAY
C * INTO ASCENDING ORDER
C * SUM - DUMMY VARIABLE USED IN FINDING MEAN, STD DEV *
C * X - ARRAY CONTAINING SAMPLE POINTS
C * MEAN - ARITHMATIC MEAN OF SAMPLE
C * SD - STANDARD DEVIATION OF SAMPLE (BIASED)
C * Y1 - MEDIAN RANK OF FIRST ORDER STATISTIC
C * Y2 - MEDIAN RANK OF SECOND ORDER STATISTIC
C * YN1 - MEDIAN RANK OF N-IST ORDER STATISTIC
C * YN - MEDIAN RANK OF NTH ORDER STATISTIC
C * SLOPE - SEE EQUATION 3.6 IN THESIS
C * ESTA - INTERPOLATED ESTIMATE OF A: SEE EQN 3.7
C * ESTB - INTERPOLATED ESTIMATE OF B: SEEE EON 3.8
C
C * I/0 FILES: INPUT - UNFORMATTED INPUT OF TRUE PARAMETER VALUES *
C 0 TAPES - OUTPUT OF TRUE PARAMETERS, SAMPLES,
C * CALCULATED VALUES
C
C * IMPORTANT: IMSL LIBRARY MUST BE ATTACHED BEFORE PROGRAM IS RUN *
C * REVIEW IMSL MANUAL ON GGBTR AND VSRTA BEFORE RUNNING *
C *
C ******************************************e******e..******
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EXTERNAL GGBTR,VSRTA
DOUBLE PRECISION DSEED
DIMENSION X(50)
REAL P, % MEAN
INTEGER NR

DSEED=1859217525 .DO
C READ PARAMETERS AND WRITE THEN TO FILE

READ*, P,Q,A,B,INR,NREPS
WRITE(5,100) NREPS,NRP,Q,A,B

100 FORMAT(14/13 / 4(F10.6/))
C ***** BEGIN LOOP FOR GENERATION OF SAMPLES ****

DO 999 J-1,NREPS
WRITE(5,103) 3

103 FORMAT(I4)
C GENERATE AND SORT SAMPLE FROM STANDARD BETA

CALL GGBTR(DSEED, P, Q, NR,X)
CALL VSRTA(X,NR)

C UNSTANDARDIZE RANDOM VARIATES,
C WRITE DATA TO FILE
C CALCULATE MEAN

DO 10 I=I,NR
X(I)-(B-A) *X(I)+A
WRITE(5.101) X(I)

101 FORMAT(F10.6)
SUM=SUM+X( I)

10 CONTINUE
MEAN-SUX/NR

C CALCULATE STANDARD DEVIATION
SUM-0.0
DO 20 I=1,NR

SUM-SUM+ (X (I)-MEAN) * (X(I)-MEAN)
20 CONTINUE

SD-(SUMINR)**0.5
C CALCULATE MEDIAN RANKS
C INTERPOLATE TO ESTIMATE A AND B

Y1-(1.-O.3)/(NR+0.4)
Y2=(2.-O.3)/(NR+0.4)
SLOPE= (Y2-Y1) / (X(2)-X(1))

C EQUATION 3.7:
ESTA-X( 1) -YI /SLOPE
YN1-(NR-1-O. 3) / (NR+O.4)
YN-(NR-O.3)/(NR+0.4)
SLOPE-(YN-YNl)/(X(NR)-X(NR-I))

C EQUATION 3.8:
ESTB-( 1-YN) /SLOPE+X(NR)

C WRITE CALCULATED VALUES TO FILE
WRITE(5.102) ESTAESTB,MEANSD

102 FORMAT(F1O.6/F10.6/F1O.6/F10.6)
C ***** END LOOP ****

999 CONTINUE
STOP
END
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PROGRAM MOMENTS

C ******e*.ee*.*e.*e....********s**~*****e************** ***e***

C
C * WRITTEN BY 2LT DAVID E. BERTRAND AFIT/GOR-81D FOR MS THESIS
C • DECEMBER 1981
C • •
C • PURPOSE: TWO AND FOUR MOMENT ESTIMATION OF
C * THE BETA DISTRIBUTION
C * S
C * VARIABLES: NREPS - # SAMPLES FOR WHICH ESTIMATION DONE (INPUT) S

C * N - SAMPLE SIZE (INPUT)
C S PR - TRUE VALUE OF FIRST SHAPE PARAMETER (INPUT) *
C • QR - TRUE VALUE OF SECOND SHAPE PARAMETER (INPUT) 0
C * AR - TRUE LOWER LIMIT OF DISTRIBUTION (INPUT) *
C • BR - TRUE UPPER LIMIT OF DISTRIBUTION (INPUT) *
C * NDIV - NUMBER OF TIMES 4 MOMENT ESTIMATION FAILS •

C * K - SAMPLE INDEX (INPUT) •
C * x - ARRAY OF SAMPLE POINTS (INPUT) S

C * P -ESTIMATE OF FIRST SHAPE PARAMETER *
C S Q - ESTIMATE OF SECOND SHAPE PARAMETER S
C S A - ESTIMATE OF LOWER LIMIT (INITIAL VALUE INPUT)*
C S B - ESTIMATE OF UPPER LIMIT (INITIAL VALUE INPUT)*
C • MEAN - ARITHMATIC MEAN OF SAMPLE (INPUT) *
C • SD - STANDARD DEVIATION OF SAMPLE (INPUT)
C * T# - SUM OF (X(I)••#), #-1,..,4
C • Y - STANDARDIZED MEAN
C * Z - STANDARDIZED SAMPLE DEVIATION
C * ZSCNT - IMSL ROUTINE WHICH SOLVES SIMULTANEOUS
C • NONLINEAR EQUATIONS BY THE SECANT METHOD
C * NPAR - # PARAMETERS SOLVED FOR BY ZSCNT ( - # EQNS) •
C * NSIG - # SIGNIFICANT DIGITS ZSCNT TO SOLVE FOR
C * ITMAX - MAXIMUM # ITERATIONS ZSCNT ALLOWED
C • PAR - ARRAY OF PARAMETERS INPUTED BY ZSCNT
C * C -ARRAY OF CONSTANTS INPUTED BY ZSCNT
C • CONTAINS SAMPLE SKEWNESS, SAMPLE KURTOSIS •
C * FCN - SUBROUTINE CONTAINING EQUATIONS TO BE SOLVED •
C • FNORM - ZSCNT PARAMETER ( SEE IMSL MANUAL )
C * W - ZSCNT WORKSPACE ( SEE IMSL MANUAL )
C * IER - ZSCNT GENERATED ERROR INDICATOR
C * (SEE IMSL MANUAL)
C
C I/0 FILES: TAPES - INPUT, CONTAINS TRUE PARAMETERS AND RANDOM
C • SAMPLES WITH ESTIMATED A + B, MEAN, STD DEV. •
C * TAPE6 - OUTPUT,CONTAINS TRUE PARAMETERS AND 4-MOMENTS
C PARAMETER ESTIMATES FOR EACH SAMPLE
C * TAPE7 - OUTPUT,CONTAINS TRUE PARAMETERS, AND 2-MOMENT*
C • ESTIMATES OF P+Q, INTERPOLATED ESTIMATES OF *
C * A+B FOR EACH SAMPLE *
C S OUTPUT- CONTAINS MESSAGE ON # OF TIMES 4-MOMENT s
C * ESTIMATION FAILED $

6
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C
C IMPORTANT: IMSL LIBRARY MIUST BE ATTACE BEFORE PROGRAM IS RUN
C *REVIEW IMSL MANUAL ON ZSCNT BEFORE RUNNING

C

EXTERNAL ZSCNT,FCN
DIMENSION I(50).PAR(2).C(2),W(42),F(2)
REAL MEAN

C READ IN TRUE PARAMETERS AND
C WRITE THEM TO FILE

READ(5,100) NREPSJPNDPR,QR,AR.BR
100 FORMAT(14/13/4(FlO.6/))

WRITE(6,106) NREPS
WRITE(7,106) NREPS
WRITE(6,101) N
WRITE(7101) N

101 FORMAT(13) o

WRITE(6.102) PRDQ.R,AR,BR
WRITE(7102) PRQR.ARBR

102 FORMAT (4 (F1O.6,31) /)
C INITIALIZE DIVERGENCE COUNTER

NDIV=O
C ***** BEGIN LOOP FOR NREPS SAMPLES***

DO 999 3=1,NREPS
READ(5.106) K

106 FORNA(14)
C INPUT SAMPLE POINTS
C AND CALCULATE SUMS

T2-0 .0
T3-0.0
T4-0.0
DO 1 I1,N

READ(S,103) X(I)
103 FORNAT(FlO.6)

T3-3+I(I) **3
T4-T4+X(I) 554

1 CONTINUE
C INPUT CALCULATED VALUES

READ(5104) ADBMNEAN.SD
104 FORMAT (Fl10.6 / F10.61F10.6/FlO.6)

T1-MEAN*N
C FIND 2-MOMENT ESTIMATES OF P,Q

Ym(MEAN-A)/I(B-A)
Z-SDI (B-A)
P-(Y*Y*(1-Y))I(Z*Z) -!
Qi((1-Y)*(1-Y) eY) /(ZSZ) -(1-Y)

C WRITE SAMPLE INDEX, 2-MOMENT ESTIMATES OF
C P+Q, AND INTERPOLATED ESTIMATES OF AMB TO FILE

WRITE(7,106) X
WRITE(7l102) P,Q



C SET PARAMETERS FOR ZSCNT
NPAR-2
NSIG-3
ITMAX=100

C SOLVE 3RD AND 4TH MOMENT EONS FOR P,Q
PAR(1) =P
PAR(2)-Q

C CALCULATE SAMPLE SIEWNESS + KURTOSIS
C USING EQNS 3.15 AND 3.16 IN THESIS

C(1)=(N*N.T3-3*N'.T 1+2.T11*3)/(SD**3*N*(N-1)*(N-2))
C(2)-((N**3+N*N) *T4-4*(N*N+N) T3*T1-3(N*N-N) t2**2

+12*NT2*.yr.*02-6'Tl*04)/(SD.*4*N*(N-)*(N-2)*(N-3))
CALL ZSCNT(FCNNSIG,NPAR, ITMAX, C, PAR, FNORM, W, I ER)

C TEST FOR FEASIBILITY OF ESTIMATES
IF( PAR().GT.0.0 .AND PAR(2).GT.O.0) THEN

C IF ESTIMATES ARE FEASIBLE, SET EQUAL TO P+Q,
C AND FIND A+B USING FIRST TWO MOMENTS

P-PAR(1)
Q-PAR(2)
A=MEAN-SD*(PO(P+Q+1) /Q) * 0.5
B=(MEAN*(P+Q)-A*Q)/P

C IF ESTIMATES OF A+B ARE INSIDE 1ST AND LAST
C ORDER STATISTICS, USE ORDER STATISTICS AS ESTIMATES

A-MIN(A,X(1))
B=MAX(B,X(N))

ELSE
C IF ESTIMATES ARE INFEASIBLE, USE 2-MOMENT ESTIMATES
C ( DON'T CHANGE VALUE OF P. 0) AND ADD 1 TO COUNTER

NDIV-NDIV+l

ENDIF
C WRITE SAMPLE INDEX AND 4-MOMENT ESTIMATES
C OF AB.P,Q TO FILE

WRITE(6,106) K
WRITE(6,102) P,Q,A,B

C ****, END LOOP *****
999 CONTINUE

C PRINT OUT # TIMES 4-MOMENT ESTIMATION FAILED
PRINT*, ' NUMBER OF TIMES DID NOT CONVERGE -',NDIV
STOP

END
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SUBROUTINE FCN(PAR,F.NP, C)

C **.****************** *.***** .**** .*.*****.*********SS** ****

C
C * PURPOSE: EVALUATE EQUATIONS WHICH Zs( fT IS TRYING TO SOLVE *
C •

C * VARIABLES: PARC- SEE MAIN PROGRAM
C * F - ARRAY OF EQUATION VALVES AT THIS P,Q
C * 1ST EQN IS DIFFERENCE BETWEEN POP. + SAMPLE *
C * SKEWNESS, 2ND EQN IS DIFFERENCE BETWEEN
C * POP. + SAMPLE KURTOSIS
C * NP - NUMBER OF PARAMETERS, ALSO # OF EQUATIONS *
C * P1 - SHORT NOTATION FOR PAR()
C * QX - SHORT NOTATION FOR PAR(2)
C * *
C ********eee*****.***e***ee********s.**eee.*****e****e******e*

DIMENSION PAR(NP),F(NP),C(2)

C TEST FOR FEASIBILITY
IF (PAR(I).LE.O.0 .OR. PAR(2).LE.O.0) THEN

C SET EQUATION VALUES TO ZERO
F(1)-0.0
F(2)-o.O

ELSE
C CHANGE TO SHORTER NOTATION

PX=PAR(1)
QX-PAR(2)

C EVALUATE EQUATIONS

F(2)-3 .*(PX+QI+1) *(2"(PX+QX) *2+PXQ*O(PI+Q-6))
+ / (PX*QX*(PXQX+2)*(P+QX+3))-C(2)

ENDIF
RETURN
END
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PROGRAM MDCVM

C *
C s WRTTEN BY 2LT DAVID E. BERTRAND AFIT/GOR-81D FOR MS THESIS
C 0 DECEMBER 1981 *
C •
C 0 PURPOSE: MINIMUM DISTANCE ESTIMATION OF THE FOUR PARAMETERS *
C 0 OF THE BETA DISTRIBUTION •
C • •
C * VARIABLES: NREPS - # SAMPLES FOR WHICH ESTIMATION DONE (INPUT) *
C * N - SAMPLE SIZE (INPUT) •
C • PR - TRUE VALUE OF FIRST SHAPE PARAMETER (INPUT) *
C * OR - TRUE VALUE OF SECOND SHAPE PARAMETER (INPUT)*
C * AR - TRUE LOWER LIMIT OF DISTRIBUTION (INPUT) *
C * BR - TRUE UPPER LIMIT OF DISTRIBUTION (INPUT) *
C 0 K - SAMPLE INDEX (INPUT)
C X - ARRAY OF SAMPLE POINTS (INPUT)
C P P - ESTIMATE OF FIRST SHAPE PARAMETER S
C * Q - ESTIMATE OF SECOND SHAPE PARAMETER
C S A - ESTIMATE OF LOWER LIMIT(INITIAL VALUE INPUT)*
C * B -+ ESTIMATE OF UPPER LIMIT(INITIAL VALUE INPUT)*
C * MEAN - ARITHMATIC MEAN OF SAMPLE (INPUT)
C • SD - STANDARD DEVIATION OF SAMPLE (INPUT)
C • Y - STANDARDIZED MEAN
C * Z - STANDARDIZED STANDARD DEVIATION
C • ZXMIN - IMSL ROUTINE USED TO MINIMIZE DISTANCE
C • NPAR - NUMBER OF VARIABLES INPUTED BY ZXMIN
C NSIG - # SIGNIFICANT DIGITS ZXIIN TO SOLVE FOR #
C- MAZIMUN # FUNCTIONAL EVALUATIONS BY ZIMIN *
C • IOPT - ZIMIN INPUT OPTION (SEE IMSL MANUAL)
C • PAR - ARRAY OF PARAMETER VALUES USED BY ZXMIN
C HG,W - ARRAYS USED BY ZXMIN (SEE IMSL MANUAL)
C • DISTPQ - SUBROUTINE TO FIND DISTANCE, P,Q INPUT
C • DISTAB - SUBROUTINE TO FIND DISTANCE. A,B INPUT
C * F - DISTANCE VALUE: SEE SUBROUTINE
C • iE - ZIMIN GENRATED ERROR MESSAGE
C • (SEE INSL MANUAL)
C • •
C I1/0 FILES: TAPES - INPUT, CONTAINS TRUE PARAMETERS AND RANDOM •
C • SAMPLES WITH EST. A + B, MEAN, STD DEY.
C s TAP2E - OUTPUT, CONTAINS TRUE PARAMETERS AND
C • PARAMETER ESTIMATES FOR EACH SAMPLE
C • •
C • IMPORTANT: IMSL LIBRARY MUST BE ATTACHED BEFORE PROGRAM IS RUN •
C • REVIEW IMSL MANUAL ON ZXMIN AND MDBETA BEFORE RUNNINGO
C • (MDBETA USED IN SUBROUTINE) *
C • •
C **SSSSS.SS*eS*S*S.S*eSSSSSSSS.SSS*eSSSS**********************e**

COMMON P,QAB,X(50),N
XERNAL ZXMIN, MDBETA, DISTPQ.DISTAD

DIMISION PAR(2),3(3),G(2),W(6)
REAL MEAN

S
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C INPUT TRUJE PARAMETERS
RE.A(5,100) NREPS,N,PRQRAR,BR

100 FORMAT(14/I3/4(F1O.6/))
WRITE(6.106) NREPS
WRITE(6,1O1) N

101 FORMAT(I3)
WRITE(6,102) PRAR,AR,BR

102 FORJ(AT(4(F1O.6)/)
102 FORMAT(FlO.6,31)/)

C ***** BEGIN LOOP FOR NREPS SAMPLES***
DO 99 T-1,NREPS

C INPUT SAMPLE INDEX
READ(S,106) 1

106 FORMAT(I4)
C INPUT SAMPLE POINTS

DO 1 1-1,N
REA.D(5,103) 1(I)

103 FORMAT(FlO.6)
1 CONTIN=

C INPUT CALCULATED VALUES
READ(5,104) A,B,MEA,SD

104 FORMAT(F10.6/FlO.6/FlO.6/Fl0.6)
C CALCULATE 2-MOMENT ESTIMATES OF PQ

Y- (NEJQ-A) / (B-A)
Z-SD/ (B-A)
Pi(Y*Y*(-Y))(Z*Z)-Y
Q-( (1-Y) *(1-Y) SY) /(ZsZ)-(1-Y)

C SET ZIMIN PARAMETERS
NPAR-2
NSIG-3
MAFN-500

C MINIMIZE -DISTANCE FOR P.Q
PAR( )-P
PAR(2 )-Q
CALL ZIM IN (DI STPQ, NPAR,NS3G, KAXN, IOPTJPARDH.G,FJ V. ER)
P-PAR(l)
(Q.PhR(2)

C MINIMIZE DISTANCE FOR A.B
PAR(1-A
PAR(2 )-B
CALL ZXK IN(DI STAB, NPARDNSIG, KAXFN, IOPTDPAR,H. G.F. , .IR)
A-PAE(1
B-PAR(2)

C WRITE SAMPLE INDEX, ESTIMATES TO FILE
VRITE(6,105) Y

105 FORMAT(14)
WRITE(6,102) P,Q*ADD

C **so* EN LOOP**S
999 CONTINUE

STOP
END
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SUBROUTINE DISTPQ(NPPAR.F)

C *eeeeI**eese***eOe***e*ee****e~~llS QSO !eSO~8QOiI soie***e

C *
C * PURPOSE: FIND DISTANCE BETWEEN ESTIMATED CDF AND 1/N EDF
C * FOR VARIABLE P,Q KEEPING A,B FIXED S

C *
C * VARIABLES: NP - NUMBER OF PARAMETERS: ALWAYS 2
C * PAR - VECTOR OF PARAMETER VALUES P,Q
C Y - STANDARDIZED SAMPLE POINT S

C S MDBETA - IMSL ROUTINE WHICH EVALUATES BETA CDF
C * Z - VALUE OF BETA CDF AT POINT Y S

C S IER - MDBETA GENERATED ERROR MESSAGE S

C * ( SEE IMSL MANUAL)
C * SUM - DUMMY VARIABLE USED TO ADD UP DISTANCE S

C * F - DISTANCE VALUE AT THIS P,QAB S

C * P,Q,A,
C * BXN - SEE MAIN PROGRAM S

C S

COMMON PoQ,A,BX(50),N
INTEGER NP
REAL PAR(NP),F,Y,ZSUM

SUM=O .0
DO 92 I-1,N

C STANDARDIZE SAMPLE POINT

Y-(X(I)-A) / (B-A)
C EVALUATE CDF

CALL MDBETA(Yo PAR (1),PAR(2),Z, IER)
C ADD TO SUM FOR DISTANCE
C SEE EQN 3-.25

SUM-SUM+ (Z- (2*1-1.) / (2. *N) ) ,2
92 CONTINUE

C SET F EQUAL DISTANCE
F-SUM
RETURN
END
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SUBROUTINE DISTAB(NPPARF)

C *see***leelse******,****iss~ss~e *****llsseeee*e*.*e.**~
C *

C * PURPOSE: FIND DISTANCE BETWEEN ESTIMATED CDF AND 1/N EDF
C * FOR VARIABLE AB KEEPING PQ FIXED
C * S
C * VARIABLES: NP - NUMBER OF PARAMETERS: ALWAYS 2
C * PAR - VECTOR OF PARAMETER VALUES A,B
C * Y - STANDARDIZED SAMPLE POINT
C * MDBETA- IMSL ROUTINE WHICH EVALUATES BETA CDF
C * Z - VALUE OF BETA CDF AT POINT Y
C * IER - MDBETA GENERATED ERROR MESSAGE
C * ( SEE IMSL MANUAL)
C * SUM - DUMMY VARIABLE USED TO ADD UP DISTANCE
C * F - DISTANCE VALUE AT THIS P,QA,B 5

C * PQA. 5
C * B,X,N - SEE MAIN PROGRAM

COMMON P,Q,A,B.X(5O),N
INTEGER NP
REAL PAR(NP),F,Y,Z,SUM

C USE ORDER STATISTICS IF INTERPOLATED VALUES
C ARE INSIDE 1ST AND LAST ORDER STATISTICS

IF(PAR(1) .GT. X(1)) PAR(l)-X(1)
IF(PAR(2) XLT. -'-(N)) PAR(2)=X(N)
SUM-O.0
DO 91 I-1.N

c STANDARDIZE SAMPLE POINT
Y-(X(I)-PAR(1))/ (PAR(2)-PAR(1))

C EVALUATE CDF
CALL MDBETA(YP.Q,Z, IER)

C ADD TO SUM FOR DISTANCE
C SEE EQN 3.25

SUM-SUM+ (Z-(2 *1-1. )1 (2. *N)) *2
91 CONTINUE

C SET F EQUAL DISTANCE
F-SUM
RETURN
END
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PROGRAM EVAL

C •
C * WRITTEN BY 2LT DAVID E. BERTRAND AFIT/GOR-81D FOR NS THESIS
C * DECEMBER 1981

C * S

C * PURPOSE: EVALUATE A SET OF ESTIMATES ON THE BETA DISTRIBUTION *
C * - CALCULATE THE MEAN SQUARE ERROR OF THE SET FOR '

C * EACH OF THE FOUR PARAMETERS
C * - FIND THE CVM DISTANCE BETWEEN THE ESTIMATED AND '

C * TRUE CDF, AND FIND MEAN AND STD DEV OF CVM FOR SET*
C ' •
C * VARIABLES: NREPS - # OF ESTIMATES OF EACH PARAMETER IN SET
C (INPUT)
C ' N - SIZE OF SAMPLES ON WHICH ESTIMATES ARE BASED*
C * (INPUT) S

C * PR - TRUE VALUE OF FIRST SHAPE PARAMETER (INPUT) *
C S QR - TRUE VALUE OF SECOND SHAPE PARAMETER (INPUT)*
C S AR - TRUE VALUE OF LOWER LIMIT (INPUT)
C S BR - TRUE VALUE OF UPPER LIMIT (INPUT)
C X - ARRAY CONTAINING GAUSSIAN QUADRATURE POINTS *
C * (INPUT)
C W - ARRAY CONTAINING GAUSSIAN QUADRATURE WEIGHTS*
C * (INPUT)
C S SUM1 - DUMMY VAR. USED TO SUM CVM STATS OF EACH "
C S REPITITION
C * SEP - SQUARED ERROR OF P IN THIS REPITITION S

C S SEQ - SQUARED ERROR OF Q IN THIS REPITITION
C ' SEA - SQUARED ERROR OF A IN THIS REPITITION
C S SEB - SQUARED ERROR OF B IN THIS REPITITION
C P P - ESTIMATE OF FIRST SHAPE PARAMETER (INPUT) •
C S Q - ESTIMATE OF SECOND SHAPE PARAMETER (INPUT) '

C S A - ESTIMATE OF LOWER LIMIT (INPUT)
C • B - ESTIMATE OF UPPER LIMIT (INPUT)
C S SUM - DUMMY VAR FOR EVAL OF INTEGRAL BY QUADRATURE'
C • Y - STANDARDIZED QUADRATURE POINT
C * MDBETA - IMSL ROUTINE WHICH EVALUATES STD BETA CDF •
C * IER - IDBETA GENERATED ERROR INDICATOR
C ( SEE ISL MANUAL) 
C F RI - VALUE OF ESTIMATED CDF AT QUADRATURE POINT *
C • F& - VALUE OF TRUE CDF AT QUADRATURE POINT
C S BETA - BETA FUNCTION - SEE EQN 3.??
C * GAMMA - IMSL ROUTINE WHICH EVALUATES THE GAMMA FCN '

C * F - VALUE OF TRUE PDF AT QUADRATURE POINT S

C S CVM - ARRAY CONTAINING CVM DISTANCE BETWEEN •
C ' ESTIMATED AND TRUE CDF FOR EACH REPITITION *
C S ISE - MEAN SQUARE ERROR OF P
C $ MSEQ - MEAN SQUARE ERROR OF Q
C * MSEA - MEAN SQUARE ERROR OF A
C 0 MSEB - MEAN SQUARE ERROR OF B
C X ICVM - MEAN OF THE CVM DISTANCES
C • SDC!M - STD DEV OF THE CVI DISTANCES
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C *
C * I/O FILES: TAPE6 - INPUT, CONTAINS TRUE PARAMETER VALUES AND *

C * ESTIMATES FOR EACH REPITITION $
C * TAPE7 - OUTPUT, CONTAINS MSE'S AND MEAN + STD DEV *
C * OF CVM DISTANCES
C * INPUT - CONTAINS 8 POSITIVE QUADRATURE POINTS AND *
C * WEIGHTS FOR 16 POINT GAUSSIAN QUADRATURE *
C *

C * IMPORTANT: IMSL LIBRARY MUST BE ATTACHED BEFORE PROGRAM IS RUN *
C * REVIEW IMSL MANUAL ON MDBETA AND GAMMA BEFORE RUNNING*
C *
C t

EXTERNAL MDBETA, GAMMA
REAL X(8,2) ,W(8),MCVM,MSEPMSEQ.MSEA,MSFB,CVM(1000)

C INPUT TRUE PARAMETER VALUES
READ(6,100) NREPS,,N,PR,QR,ARBR

100 FORMAT(14/13/4(FlO.6.3X)/)
C INPUT QUADRATURE POINTS AND WEIGHTS

DO 1 =1,8
READ*, X(I,1),W(I)
X (1,2)=-1. *X (1,1)

C TRANSLATE QUAD PTS TO (AR,BR) INTERVAL
DO 2 1=1,2

X(I,3)=((BR-AR)/2) *X(I,3)+(BR+AR)/2
2 CONTINUE
1 CONTINUE

C INITIALIZE SUMS
SUM1 =0.0
SEP= .0
SEQ-0.0
SEA=0 .0
SEB-0 .0

C ***** BEGIN LOOP FOR NREPS REPITITIONS ss*
DO 999 K-1,NREPS

C INPUT PARAMETER ESTIMATES
READ(6,101) P,Q,A,B

101 FORMAT(/4(F1O.6,3X)I)
C EVALUATE CYM INTEGRAL BY QUADRATURE

SUM-0 .0
DO 888 J-1,2
DO 777 1-1,8

C STANDARDIZE QUADRATURE POINT
C USING ESTIMATED VALUES OF A + B

Y-(X(I,S)-A) / (B-A)
C RESET STANDARDIXED QUAD PT IF
C IT IS OUTSIDE ESTIMATED RANGE

IF(Y.LT.0.0) Y-0.0
IF(Y.GT.1.0) Y-1.0

C EVALUATE EST. BETA CDF
CALL MDBETA(Y,P,Q,FNIER)

C STANDARDIZE QUADRATURE POINT
C USING TRUE VALUES OF A + B

75



Y= (XCI, 3)-AR) /(BR-AR)
C EVALUATE TRUE BETA CDF

CALL MDBETA(YPRQR,FR, IER)
C EVALUATE TRUE BETA PDF

BETA-GAJIA (PR) *GAMIL(QR) IGAJOA( PR+QR)

/ (BR-AR) ** (PR+QR-1)
C ADD TO SUN FOR EVAL. OF INTEGRAL

SUM-SUM+W(I) * (FN-FR) * *2 *F
777 CONTINUE
888 CONTINUE

C CALCULATE CYM STATISTIC
CVM(K)=N*( (BR-AR) /2) *SUN

C ADD TO SUMS FOR CVM. SQUARED ERRORS
SUN1=SUM1+CVM(K)
SEP -SEP+(PR-P)**2
SEQ =SEQ+(QR-Q) *02
SEA -SEA+(AR-A)*2
SEE =SEB+(BR-B)**2

C 0*** END LOOP **
999 CONTINUE

C CALCULATE MEAN SQUARE ERRORS, MEAN CVM
MSEP- SEP/NREPS
MSEQ- SEQ/NREPS
MSEA= SEA/NREPS
MSEB- SEB/NREPS
MCVM=SUM1 /NREPS

C CALCULATE STD DEV OF CVM STATISTICS
SUM=O.()
DO 3 K=1,NREPS

SUM=SUN+(CVM(KE-MCVM) 0'2
3 CONTINUE

SDCVM-( SUM/NIEPS) **O.5
C WRITE RESULTS TO FILE

WRMT(7,103) MSEP.MSEQ,MSEA,MSEBMCVIM,SDCVM
103 FORMAT(4(FlO.6.3X)/2(F1O.6,3X))

STOP
END
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